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 Delay-Safe False Paths  

Engineers enter false paths on a design for a variety of reasons. A path may be specified false 
because it is between two asynchronous clock domains, or because the path originates from a 
static register whose value never changes, or because the path is a timing don’t care. In this 
paper we focus on paths that are specified false because the engineer believes the path is 
impossible to sensitize. Engineers specify such paths as false because they believe the 
combination of logic values required to sensitize the path is not possible based on the 
functionality of their design. 

Static sensitization is an approach to false-path verification that establishes if the required 
combination of values is possible to sensitize a path. If the combination is impossible a false-
path definition is considered good. If it is possible then the false-path definition is considered 
bad. However, it is important to consider not just the functionality of the chip but circuit delay 
when determining if a path is sensitizable. 

Dynamic sensitization refers to the fact that while in any given clock cycle, the static state of 
a design may be such that a path cannot be sensitized, the dynamic nature of the design (once 
timing delays are accounted for) may temporarily allow the design to enter the state necessary 
to sensitize a path. Dynamic sensitization allows glitches to propagate through paths that are 
statically false. It is important that false-path definitions established using static sensitization 
are safe under dynamic sensitization, i.e. that static sensitization does not incorrectly mask 
real timing problems by underestimating the true delay on  a design. 

Static and Dynamic Sensitization are Unsuitable for False Path Verification 
and Generation 

Consider the circuit in Figure 1. Assume that net delays are zero and gate delays are 1ns. 
Assume the following two false-path definitions are specified: 

(1) set_false_path –from A –through D –to Z 

(2) set_false_path –from B –through D –to Z 

If these false paths are verified considering just static sensitization then both false-path 
definitions will be considered good. The propagation condition for the first false-path 
definition is (B & !C & E). If B is high then E must be low, so (B & !C & E)is always false. 
So, based on static sensitization, false-path definition (1) is good. Similarly, the propagation 
condition for false-path definition (2) is (A & !C & E). If A is high then E must be low, so 
(A & !C & E)is always false.  So, based on static sensitization false-path definition (2) is 
good. Once both false-path definitions are applied the critical delay on the design is 2ns, 
because both 3ns paths have been classified as false paths. 
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Figure 1: Example design. 

Now, consider the dynamic nature of the design. Assume all inputs (A, B, C) transition from 
high to low at 0ns as shown in Figure 2. Nets D and E will both go high at 1ns. F will go high 
at 2ns and Z will go high at 3ns. So, the real critical delay to Z is 3 ns – not 2 ns and false-path 
definitions (1) and (2) are actually incorrect – they both apply to dynamically sensitizable 
paths that are, in fact, the critical paths to Z. Applying these false-path definitions is a recipe 
for disaster because it could easily result in timing failure. 

Figure 2: Stimulus applied to example design. 

So, clearly static sensitization cannot be used to verify if a false-path definition is good. It can 
easily say a false-path definition is good when actually the path is both sensitizable and is the 
critical path to a timing endpoint. Dynamic sensitization appears to overcome this issue 
because it takes circuit delay into account. The problem with dynamic sensitization, however, 
is that the results it reports change with circuit delay. For example, assume that the nor-gate in 
Figure 1 has a delay of 3ns and all the other gates have a delay of 1ns. With this delay 
assignment, dynamic sensitization would consider false paths (1) and (2) correct. Consider 
you are performing dynamic sensitization using worst-case maximum delay values. Based on 
a 3ns delay, dynamic sensitization would conclude that paths (1) and (2) are false, but if 
when you manufacture the chip, the nor-gate sometimes has a delay of less than 3ns (1ns, for 
example) then the paths are not false and applying a false-path definition that has been 
generated or verified using dynamic sensitization will result in silicon failure. 
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The delay on a design undergoes significant change as it is taken through the implementation 
flow. A false-path verification approach based on dynamic sensitization could easily say that 
a false-path is good after logic synthesis, bad after placement, good again after routing and 
finally bad after considering SI effects on delay. It is impossible to implement a chip if you 
have to keep adding and deleting false-path definitions as implementation progresses. Ideally, 
you need a stable constraint file at the start of chip-implementation whose contents have been 
verified good and whose contents stay good as chip-implementation progresses. So, what is 
required is a false-path verification approach that is able to detect those false-path definitions 
that are good and impervious to changing circuit delay. 

Theory 

A controlling side-input is an input to a gate that needs to have a specific value for the 
transition on another input to the gate to propagate to the output. To propagate a transition 
through a gate it is only necessary for a controlling side-input to have the required value at the 
time the transition is propagating through the gate. So, in the example in Figure 1, for the A-
>D transition at time 0, B needs to be high at time 0, for the D->F transition at time 1, C needs 
to be low at time 1, and for the F->Z transition at time 2, E needs to be high at time 2. It is not 
necessary for B and E to be high and for C to be low for the entire duration of the clock cycle 
as assumed by static sensitization.  

Until the controlling side-inputs reach their final stable value there may be a transitory period 
when the required combination of controlling side-input values is achievable to propagate a 
path. Once the controlling side-inputs reach their final stable value it is impossible to 
propagate a transition along a path that is statically false. The key point here is that for a static 
false path to be dynamically sensitizable under some input stimulus there must be a 
controlling side-input to a gate that transitions at the same time or after the time at which the 
input to the gate along the path transitions. This is the “requirement for the dynamic 
sensitization of static false paths”. For example, the path A->D->F->Z in Figure 1 that is 
statically false is dynamically sensitizable for the stimulus shown in Figure 2 only because the 
controlling side-input B transitions at 0ns (at the same time at which the input A transitions). 
If, for the stimulus shown in Figure 2,  B had transitioned before A then the path A->D->F->Z 
would not be dynamically sensitizable (B with a value of 0 would block the A->D transition).  

Delay-Safe False Path Verification and Generation from FishTail 

The false-path sensitization approach taken by FishTail’s exception generation and 
verification products (Focus and Confirm) ensures that only false-path definitions that are 
safe under dynamic sensitization are both generated and verified to be good. We will refer 
to the false paths that Focus generates or that Confirm verifies as correct as delay-safe false 
paths. We are able to guarantee that even under dynamic sensitization delay-safe false paths 
will not mask real timing problems on a chip and that delay-safe false paths will never cause 
the delay to a timing endpoint to be underestimated. Bottom line - delay-safe false paths 
are impervious to circuit delay and are always safe to apply. 

Delay-safe false paths result from control flow on a design. For each gate in a design we 
partition the inputs to the gate into data and control. A couple of examples are shown in 
Figure 3. Control inputs to a gate (sel in Figure 3a) impact the flow of information through 
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the data inputs of the gate (a and b in Figure 3a). So, for example, the transition from a->y in 
Figure 3a requires sel to be high and the transition from b->y requires sel to be low. Control 
and data inputs adhere to the following rules: 

1) Only control inputs to a gate are controlling side-inputs – so only control 
inputs impact the propagation of transitions through a gate.  

2) Data inputs are never controlling side-inputs. So, data inputs have no impact 
on the propagation of transitions through a gate. 

3) Transitions on control inputs propagate unconditionally to the output of a 
gate. So, nothing blocks the transition on a control input.  

Figure 3: Example control and data markings. 

Figure 3b shows one possible control and data marking for an and gate. Both inputs to the and 
gate are of type data and because there is no control identified, the transition from the inputs 
of the and gate to the output is always possible and unconditional. Figure 3c shows another 
possible control and data marking for an and gate where the a input is data and the b input is 
control. With this control marking the b input unconditionally transitions to y, while the a 
input only transitions to y when b is high. 

For the design in Figure 1, under no control/data marking that conforms to rules (1) through 
(3) above, are the false-path definitions (1) and (2) both considered good. For example, if 
none of the inputs to any of the gates is marked as control, then there are no controlling side-
inputs and all paths on the design are true. So, Focus would not generate any false paths on 
the design and both false-path definitions (1) and (2) would be flagged as incorrect by 
Confirm. 

Now, consider the design in Figure 4 to see why delay-safe false paths are impervious to 
changes in circuit delay. Assume all net delays are zero and gate delays are 1ns. Focus would 
generate and Confirm would verify the following false-path definition as good: 

set_false_path –from B –to Z 

Figure 4: Example design. 
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The B->E transition in Figure 4 requires C to be low and the F->Z transition requires D to be 
low. So the propagation condition for the false path is (!C & !D). If C is low then D must be 
high and so the condition (!C & !D) is always false. The path is statically false. Without the 
false-path definition the critical delay to Z is 3ns (B->E->F->Z and C->E->F->Z). Even with 
the false-path definition applied the critical delay to Z remains 3ns (C->E->F->Z). 

Why is the false-path definition safe under dynamic sensitization? Consider the stimulus 
shown in Figure 5 where all inputs (A, B, C) transition from low to high at 0ns. D goes low at 
1ns, E goes high at 1 ns, F goes high at 2 ns and Z goes high at 3ns. The path B->E->F->Z is 
dynamically sensitizable with a delay of 3ns, but because there is no false-path definition 
from C to Z the delay to Z is not under-estimated (C->E->F->Z is a true path). So the false-path 
definition does not mask a real timing problem on the design and is safe under dynamic 
sensitization. 

Figure 5: Stimulus applied to example design. 

The reason delay-safe false paths are impervious to circuit delay is the following. According 
to the “requirement for the dynamic sensitization of a static false path”, there must be a 
controlling side-input at a gate that transitions at the same time or later than the transition on 
the input to the gate along the path. With our control-based approach to false-path generation 
and verification, the controlling side-input must be a control input (all controlling side-inputs 
are control inputs). Control inputs always unconditionally transition to the output (nothing 
blocks the transition from a control input to the output of a gate). So, when a delay-safe false 
path is dynamically sensitizable, there will always exist a path through a control input that is a 
true path with delay greater than or equal to the dynamically sensitizable false path. For this 
reason delay-safe false paths never mask a real timing problem on the chip and are always 
safe to apply in the implementation flow. 

The false paths generated by Focus and those verified as good by Confirm are delay-safe false 
paths that are legitimate to apply throughout the implementation flow regardless of circuit 
delays. 
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